D° to Kπ measurement using KalFit

Sasha Lebedev, Iowa State University

General idea

- Opposite sign tracks should cross far from primary vertex (DIST $_{PAIR}$ large)
- Pair momentum should point to primary vertex (DCA_{PAIR} small)
- Pair momentum should point away from primary vertex

The procedure

- Generate single D⁰ using pythia (signal).
- Generate pythia min. bias pp events as background.
- Run both samples through PISA and full reconstruction.
 Use KalFit to find secondary vertex for opposite sign pairs and momentum components at this secondary vertex (no merging, no PID).
- Calculate DIST_{PAIR} and DCA_{PAIR} assuming no magnetic field in making projections.
- Compare DIST_{PAIR} and DCA_{PAIR} distributions in signal and background samples, and make cuts in order to improve S/B ratio.

DIST_{PAIR} distribution

- Distributions are not normalized.
- Momentum cut 0.5 GeV (optimum for D° studies)

DCA_{PAIR} distribution

Distributions are not normalized

Invariant mass distribution

- Distributions are not normalized.
- Pion masses assumed.
- Count pairs within 2 sigma of D° mass, calculate S/B ratio and see how it changes if various cuts are applied.

The two peaks in blue histogram are same/opposite arm

Signal/Background ratio and efficiency

Opposite sign pairs with momentum cut 0.5 GeV each, and pair momentum pointing away from event vertex.

Circles: S/B ratio

Squares: cut efficiency

Blue: no χ^2 cut

Red: $\chi^2 < 999$

Magenta: $\chi^2 < 150$

Summary

- S/B ratio can be improved only by factor ~2.0-2.5, but more than half of D⁰ will be lost. This is bad. In run 5 pp the estimate was ~650 D⁰ in PHENIX Central Arms acceptance.
- DCAPAIR cut does not work (maybe should not work?).
- Main reason for bad performance bad DCA resolution at low momenta. Most particles involved in this study have momentum ~0.5 GeV.
 - Typical DCA resolution for pythia bg pairs is ~120μm with non-Gaussian tails.
- We need to improve DCA resolution at low momenta!
- Using VTX standalone can increase statistics by ~10.